

PII: S0040-4039(97)01671-7

Structure-Reactivity Studies of the Triplet-Sensitized Photorearrangements of Allyl Phosphites

Yande Huang and Wesley G. Bentrude*

Department of Chemistry, University of Utah, Salt Lake City, UT 84112

Abstract: The relative quantum efficiencies of allylphosphonate (7-12) formation, from the triplet-sensitized photorearrangement of allyl phosphites (1-6), can be qualitatively correlated using the 1,2-biradical model for π - π^* excited states and considering the effect on excited state energies and lifetimes of placing the π bond in a small ring. © 1997 Elsevier Science Ltd.

Recent physical measurements on the π - π^* triplet excited states of alkenes, especially arylsubstituted ones, show them to be essentially 1,2-biradicals¹ with the spin-unpaired electrons in individual, *perpendicular p* orbitals. Nonetheless, few studies have been published that correlate the structures and reactivities of the triplet excited states of alkenes with the 1,2-biradical model. An example of such a correlation is the addition of triplet 1-phenylcyclohexene to its ground state.² Another is a recent study of effects of structure on the rates of ring-openings of cyclopropylcarbinyl, π - π^* "1,2-biradical" excited states that were seen to parallel nicely those of cyclopropylcarbinyl monoradicals.³ Furthermore, the increased energy of the *planar* π - π^* triplet of β -cyclopropyl-(3H)-indene resulted in an accelerated rate of cyclopropylcarbinyl ring opening compared to the monoradical model.³ Doubtless, it is the high energies of planar 1-phenylcyclopropenyl π - π^* triplet excited states that leads to their rapid intramolecular hydrogen abstraction reactions.⁴

The regiospecific, triplet sensitized photorearrangements of allyl phosphites (A) to the corresponding allylphosphonates (C), discovered by this research group,⁵ have been interpreted according to the Scheme shown:

The triplet 1,2-biradical-like π - π * alkene moiety of ³A undergoes intramolecular oxidative addition of its *monoradical-like* carbon terminus to phosphorus (k₃) to give the assumed 1,3-phosphoranyl biradical ³B. β scission of ground state 1,3-biradical B affords allylphosphonate C.⁵

We report here a study of the relative quantum yields, $\Phi_p(rel)$, for the triplet, o-xylene-sensitized⁶ formation of dimethyl allylphosphonates 7-12 from the series of allyl phosphites 1-6 (see Table). The

propensities of various ground-state, carbon monoradicals to react with three-coordinated phosphorus compounds, e.g. phosphites ((RO)₃P), have recently been correlated with radical structure (radicals, reactivity order = Ph, bicyclo[1.1.1]pent-1-yl>primary>secondary>tertiary, benzylic).⁷ In the present work we conclude that application of the "1,2-biradical analogy" to the alkene terminus of the π - π * triplets (³A) of 1-6, along with consideration of the expected effect on π - π * triplet energies and lifetimes of inclusion of the double bond in a ring, can qualitatively explain the primary trends in quantum yields found for formation of allylphosphonates 7-12. Effects of R² on ³B stability and of phosphite structure on the rate of β scission (k₂) also appear to play a role.

The photolyses of 1-6 were carried out in matched, septum-fitted, quartz test tubes, each of which contained 2.5 mL of a solution of phosphite (0.005 M) and tri-*n*-propyl phosphate (internal standard, about 0.005 M) in 10% *o*-xylene/cyclohexane (v/v). The solutions were purged with argon for 10 min, placed in a merry-go-round apparatus, and irradiated with 254 nm light from a Rayonet reactor. The photorearrangements were monitored by GLC. Relative quantum efficiencies for phosphonate formation, Φ_p (rel), were determined from the times required to reach 20% consumption of each phosphite multiplied by the accountability of phosphite consumed in terms of phosphonate formed. These results appear in the Table. (Reactions of phosphites 1, and 3-6 occurred with nearly complete regiospecificities,⁵ which excludes

Phosphite	Time, min ^a	$\Phi_{C}(rel)^{b}$	% Acc. ^c	$\Phi_p(rel)^d$
1	90	1.0	50	1.0
2	15	6.0	75	9.0
3	5	18.0	76	27
4	9	10	76	15
5	35	2.6	65	3.4
6	60	1.5	60	1.8

Table. o-Xylene-Sensitized Photorearrangements of Allyl Phosphites

^aTime required for 20% consumption of phosphite under constant 254 nm light flux. ^bRelative quantum yields for consumption of phosphites 1-6. ^cAccountability of phosphite consumption in terms of phosphonate formation: [(moles phosphite consumed)/(moles phosphonate formed)] X 100. ^dRelative quantum yields for formation of phosphonates 7-12.

the formation of more than minor amounts of phosphonyl $[(MeO)_2P(O) \bullet]/substituted-allyl radical pairs.)$

The value of Φ_p for a given phosphite (eqs 4 and 5) is equal to the product of the quantum yields for sensitization of A (Φ_s , eqs 2 and 3), cyclization to ³B (Φ_{CY}), and β scission to product C (Φ_β) (see Scheme).

$$s \xrightarrow{hv} {}^{1}s \xrightarrow{ISC} {}^{3}s$$
 1)

$$^{3}S + A \xrightarrow{k_{1}} S + ^{3}A$$
 2)

$$^{3}S \xrightarrow{k_{2}}$$
 ground state 3)

$$\Phi_{\mathsf{P}} = \Phi_{\mathsf{S}} \Phi_{\mathsf{CY}} \Phi_{\mathsf{B}} \tag{4}$$

 $= [k_1/(k_1 + k_2)][k_3/(k_3 + k_4 + k_5)][k_8/(k_7 + k_8)]$ 5)

To interpret the changes in Φ_p in terms of the influence of variations in phosphite structure on Φ_s and Φ_{CY} alone, the efficiency of sensitization of 1-6 must be relatively constant. In this regard, the range of $\Phi_p(rel)$ values was nearly the same (25-30) for o-xylene and its isomer *m*-xylene which might be expected to have different steric requirements for energy transfer to phosphites 1-6. The efficiency of sensitization by *m*-xylene, as measured by the time required to reach 20% conversion of a given phosphite, was consistently lower than that for o-xylene, but only by 10-20%. Thus, energy transfer is only slightly less efficient from *m*-xylene, consistent with a lack of severe structural constraints on the efficiency of triplet energy transfer.

Indeed, the relative overall quantum yields, $\Phi_p(rel)$, can be interpreted in terms of Φ_{CY} and Φ_β (eqs 4 and 5) and reasonable expectations of the effects of phosphite structure change on these two quantum yields. For example, the observed 9-fold reduction in $\Phi_p(rel)$ for 1 compared to 2 (see Table) is reasonable if the secondary carbon radical center of ³A from 1 leads to a reduced value of k_3 (and thus Φ_{CY}), and an increase in k_7 (reformation of allyl phosphite A(1)) with concomitant reduction in Φ_{β} .⁷ Previously, it has been seen that primary but not secondary alkyl monoradicals add reversibly to trialkyl phosphites and yield product alkylphosphonates when a sufficiently rapid β scission process is available:⁸

$$\mathsf{Et} \bullet + (\mathsf{MeO})_2\mathsf{POCH}_2\mathsf{Ph} \quad \texttt{z} \bullet \quad (\mathsf{MeO})_2\mathsf{P}(\mathsf{Et})\mathsf{OCH}_2\mathsf{Ph} \rightarrow (\mathsf{MeO})_2\mathsf{P}(\mathsf{O})\mathsf{Et} + \mathsf{PhCH}_2 \bullet$$

The reduced $\Phi_p(rel)$ value for 1 is highly consistent with the 1,2-biradical model for alkene π - π * triplet excited states in which the terminus of ³A from 1 behaves like a secondary monoradical center. The value of $\Phi_p(rel)$ for 2 also may contain a contribution from an increase in k₃,⁷ and thus Φ_{CY} , resulting from the stabilizing influence of the methyl substitution in the biradical ³B formed from 2 (R¹ = H; R² = Me). Moreover, formation from 2 of a disubstituted olefin in C(8) may further *increase* $\Phi_p(rel)$ via an increase in k₈ and thus Φ_{β} . The alkene moiety in 7 (from 1) is monosubstituted.

Allyl phosphite 3, which photorearranges with greatest efficiency ($\Phi_p(rel) = 27$) in the series 1-6, appears to benefit from three favorable rate constants: large k₃, small k₇ (*primary alkyl radical-equivalent* (³A) attack on phosphorus, tertiary radical center in ³B), and large k₈. The latter is associated with the formation of allylphosphonate 9 containing a stable *trisubstituted* double bond. Furthermore, the bicyclic biradical ³B from 3 appears from Dreiding models to be pyramidal at the carbon radical center and, therefore, a high-energy species that is prone to very rapid β scission (k₈). All favor increased Φ_{CY} and Φ_{β} .

At first glance the high quantum yield for 4 ($\Phi_p(rel) = 15$) might appear anomalous. As with 1 ($\Phi_p(rel) = 1$), a secondary-like carbon radical center of triplet 4 (³A) attacks phosphorus (k_3 disfavored, k_7 favored).⁷ As with 2, k_3 is favored by the tertiary carbon center in diradical ³B, and a disubstituted alkene system (phosphonate 10) is formed on β scission (increased k_8). Therefore, a value of $\Phi_p(rel)$ between those for 1 and 2 might have been expected. We interpret the unexpectedly large relative phosphonate quantum yield for 4 ($\Phi_p(rel)=15$) to result primarily from the anticipated¹ extended lifetime of the planar π - π^* triplet state for 4 (k_4 very much reduced) and several kcal/mol higher π - π^* triplet energy (k_3 increased). Both effects increase Φ_{CY} . The lifetime and triplet energy phenomena stem from the placement of the C=C bond in the five-membered ring.¹ Thus, the π - π^* triplet of 4 is constrained to retain the higher energy, parallel alignment of its adjacent p orbitals rather than relax its geometry to one with the p orbitals orthogonal; and rapid energy loss from ³A to give ground state A(4) by the free-rotor mechanism is unavailable. These factors should lead to a much increased value of Φ_{CY} , likely the largest for any phosphite in the series. Furthermore, for 4 the strain engendered by the five/five ring structure of ³B may well enhance the values of k_8 (β scission) and $\Phi_p(rel)$, as was proposed above for 3.

For phosphites 5 and 6, bond rotation is much freer, leading to reduced π - π * triplet lifetimes and energies. Their $\Phi_p(rel)$ values are small, as expected for the 1,2-biradical model in which the carbon center becoming bonded to phosphorus in ³B is secondary (k₃ reduced), as it is for 1.⁷ For 5 and 6, the tertiary carbon center in ³B and disubstituted alkene moiety in 11 and 12 should enhance Φ_{CY} and Φ_{β} . These factors, also present in the photorearrangement of 2, may lead to the observed slightly larger $\Phi_p(rel)$ values for 5 (2.6) and 6 (1.5) compared to that for 1(1.0).

Acknowledgements. Grants from the National Science Foundation and the National Institutes of Health (CA11045, GM53309) are gratefully acknowledged.

References and Notes

- 1. Unett, D.J.; Caldwell, R.A. Res. Chem. Intermed. 1995, 21, 665.
- 2. Unett, D.J.; Caldwell, R.A.; Hrncir, D.C. J. Am. Chem. Soc. 1996, 118, 1682.
- 3. Caldwell, R.A; Zhou, L. J. Am. Chem. Soc. 1994, 116, 2271.
- 4. Padwa, A.; Chuo, C.S.; Rosenthal, R.J.; Rubin, B. J. Am. Chem. Soc. 1981, 103, 3057.
- (a) Bentrude, W.G.; Dockery, K.P.; Ganapathy, S.; Lee, S.-G.; Tabet, M.; Wu, Y.-W.; Cambron, R.T.; Harris, J.M. J. Am. Chem. Soc. 1996, 118, 6192. (b) Ganapathy, S.; Cambron, R.T.; Dockery, K.P.; Wu, Y.-W.; Harris, J.M.; Bentrude, W.G. Tetrahedron Lett. 1993, 34, 5987. (c) Bentrude, W.G.; Lee, S.-G.; Akutagawa, K.; Ye, W.; Charbonnel, Y. J. Am. Chem. Soc. 1987, 109, 1577. (d) Bentrude, W.G.; Lee, S.-G.; Akutagawa, K.; Ye, Y.; Charbonnel, Y. J. Omelanczuk, J. Phosphorus and Sulfur 1987, 30, 105. (e) Bentrude, W.G. In Phosphorus Chemistry. Developments in American Science, ACS Symposium Series, 486, Walsh, E.N.; Griffith, E.J.; Parry, R.W.; Quin, L.D., Eds.; American Chemical Society: Washington, D.C.; 1992; Ch. 11.
- 6. Xylenes are typically the sensitizers of choice for the high energy π - π * triplets of non-aryl-substituted alkenes. See Kropp, P.J. J. Org. Photochem. 1979, 4, 1.
- 7. In fact ${}^{3}A \rightarrow {}^{3}B$ may be reversible $(k_{3} \approx k_{.3})$. However, the interpretations made in the text are unaffected. Thus, when the attacking "radical center" in ${}^{3}A$ is secondary (phosphites 1 and 4-6), the expected increase in $k_{.3}$ and decrease in Φ_{C} would simply accentuate the influence on Φ_{P} of the anticipated parallel increase in $k_{.7}$ (see text); i.e. both Φ_{β} and Φ_{C} (and consequently Φ_{P}) would be reduced.
- 8. Dockery, K.P.; Bentrude, W.G. J. Am. Chem. Soc. 1997, 119, 1388.

(Received in USA 30 July 1997; accepted 12 August 1997)